Data Mining in the Telecommunications Industry
نویسنده
چکیده
The telecommunications industry was one of the first to adopt data mining technology. This is most likely because telecommunication companies routinely generate and store enormous amounts of high-quality data, have a very large customer base, and operate in a rapidly changing and highly competitive environment. Telecommunication companies utilize data mining to improve their marketing efforts, identify fraud, and better manage their telecommunication networks. However, these companies also face a number of data mining challenges due to the enormous size of their data sets, the sequential and temporal aspects of their data, and the need to predict very rare events—such as customer fraud and network failures—in real-time. The popularity of data mining in the telecommunications industry can be viewed as an extension of the use of expert systems in the telecommunications industry (Liebowitz, 1988). These systems were developed to address the complexity associated with maintaining a huge network infrastructure and the need to maximize network reliability while minimizing labor costs. The problem with these expert systems is that they are expensive to develop because it is both difficult and timeconsuming to elicit the requisite domain knowledge from experts. Data mining can be viewed as a means of automatically generating some of this knowledge directly from the data.
منابع مشابه
Intelligent Telecommunication Technologies
Telecommunication networks are extremely complex systems requiring high reliability and availability. The effective management of these networks is a critical, but complex, task. To help with this problem, the telecommunications industry has heavily invested in intelligent technologies. This chapter describes intelligent technologies and applications used within the telecommunications industry....
متن کاملPrediction-Based Portfolio Optimization Model for Iran’s Oil Dependent Stocks Using Data Mining Methods
This study applied a prediction-based portfolio optimization model to explore the results of portfolio predicament in the Tehran Stock Exchange. To this aim, first, the data mining approach was used to predict the petroleum products and chemical industry using clustering stock market data. Then, some effective factors, such as crude oil price, exchange rate, global interest rate, gold price, an...
متن کاملService Quality Management Modeling, Controlling and Upgrading as well as Communications and Information Technology Enhancement through Conducting a Case Study in the Parent Telecommunications Network of Iran
This paper reviews the service quality management control and upgrade as well as the communications and information technology enhancement. The purpose of this research is the control and improvement of the service quality management as well as the enhancement of the parent telecommunications network of I.R.Iran that finally, taking the specific conditions into consideration, the quality manage...
متن کاملRetaining Customers Using Clustering and Association Rules in Insurance Industry: A Case Study
This study clusters customers and finds the characteristics of different groups in a life insurance company in order to find a way for prediction of customer behavior based on payment. The approach is to use clustering and association rules based on CRISP-DM methodology in data mining. The researcher could classify customers of each policy in three different clusters, using association rules. A...
متن کاملAnalyzing Customer Churn in the Software as a Service (SaaS) Industry
Predicting customer churn is a classic data mining problem. Telecommunications providers have a long history of analyzing customer usage patterns to predict churn. Many other industries, such as banking, routinely analyze customer behavior to predict customer satisfaction and renewal rates. The Software as a Service (SaaS) model enables software vendors to collect customer usage data that is no...
متن کامل